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LARGE-SAMPLE PROPERTIES OF LEAST-SQUARES ESTIMATORS 
OF HARMONIC COMPONENTS IN A TIME SERIES WITH STATIONARY 

RESIDUALS.   I.  INDEPENDENT RESIDUALS. 

by 

A. M. Walker 

1.  Introduction 

Let  {X ,  t = 0,  + 1, + 2, . ..} be a discrete parameter time series 

generated by a model of the form 

Xt = mt+Yt (1.1) 

where 
q. 

mt = E(Xt)  = f   (Arcos a)rt + Brsin c^t)  ,     (1.2) 

with 0 < to < jt  (which involves no loss of generality), and 

00 

*t = T.  su(£) =t.u > (1-3) 
u=0 

the £  being distributed identically and independently each with mean 

zero and finite variance E(e ) = v, and. the g (£) being specified func- 

tions of an unknown vector-valued parameter Q  = (Q ,Q  , ...,Q  )  such that 

Z   g (g) < <»; to avoid indeterminacy we take gn(©) - !•  (X, } thus 

has a systematic component consisting of the sum of q simple harmonic 

components with different frequencies w  and a residual or 'noise' com- 

ponent which is a completely stationary series having spectral density 

iuui2 fKe) =- (v/2«) \Z  sie) elü)T ,      (i.k) 
„ u _ 

u=0 
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and is usually called a linear process (see, for example, Hannan, i960, 

P. 33). 

Suppose that the values of the other parameters in the model, 

namely A , • . B ,  w  (l < r < q)  and v,  are also unknown. We then 

have a fairly general type of 'hidden periodicities' model, the term 

'hidden periodicity' denoting a harmonic component whose frequency as 

well as its amplitude and phase is unknown. The restricted model 

obtained by taking the residual component to consist of 'white noise', 

that is, g (0) = 0 for u > 1, so that (I.3) just becomes Y = e 

and'the parameter Q_    disappears, has been quite widely used in connec- 

tion with physical and economic phenomena, though in recent years it 

has become less popular because of the realisation that analyses based 

on this can be very misleading if the 'white noise' assumption is not a 

good approximation. 

The problem of estimating the parameters in the model (l.l) from 

(n) 
data consisting of n observations Xv  ='(X,,X^,...,X ),  and of 

determining the approximate distribution of the estimators for large n 

was dealt with by Whittle (1952). He used a method of estimation which 

was approximately equivalent to an application of the principle of 

least squares, becoming approximately the method of maximum-likelihood 

when e,  has a normal distribution so that {X} becomes a normal or 

Gaussian process. By means of heuristic arguments he obtained the 

following results.. 
/\   /\        /\ 

(l) The estimator (A ,B ,co ) is asymptotically (n -* 00) normal 

with mean 0 and covariance matrix 



2vg(w,e) 
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1        0       JnB 
2   r 

i|nB   - ^ n A   i n2(A2+B2) 
\2   r    2   r  3  v r r/j 

•where 

icoui2 
*"S    =  I I S„(£) e1 "T  . (1.6) 

u=0 

See Whittle, 1952., p. 53; equation (k.lk)  and 1954, p. 224, equation 

(ll). Note that the change in sign of the first two elements in the 

last row and last column in (1.5) is due to Whittle having interchanged 

A  and B  in (1.2), and that his computation of the bottom diagonal 

element is incorrect, the numerical factor being l/3>  not l/6. 

. (2)  (A1,B1,w1), (A2,B2,u2), ... , (A ,B ,u ) and 9,    the 

estimator of _£,  are/all mutually asymptotically uncorrelated. 

(3) 2.    -*-s asymptotically normal with mean 0 and covarianee 

matrix (nW)  , where the elements of W are given by 

^      pit d log g(w,9)    ö log g(.u,e) 
w __    /  d(J 

d J -it 1 j 

u 12 - p  (constant term in expansion of    v-r- {log| £    g  (£)z   |   } (l-7) 
1 . i u=0 

x "3*H"~ (logI X.    S  („)z   !   ^    on ~kke u-^lt- circle)     . 
j u=0 

See Whittle,   1952,  p.49,  equation (3-7),   1954,   P>2l4,  equation (7.). 

The estimators are obtained by minimising the expression 



2        as(£)C
s -

2n"1. I   H(o)r,0)   2 Xt(Ap  cos a) t + Br  sin o> t) 
|s [ < n-1    ° r=l t=l 

(1.8) 

• I rJ "(V5J   (Ar + Br>     ' 

— 1     n—  si 
•where    C     = n      £     '    '  X    X     i    i     (0 < s < n-l)     are the  sample 

S C—J_ X>        L •* I S I 

covariances (with divisor n), h(u>,_0) = {g(w,9)}~  f     and 

as(0) = ^ /^e1"8 h(w,e) do) . (1.9) 
J -it 

Compare Whittle, 1952, p.50, equation (4-5) or 1954, P-22J5, equation 

(7)• These, apart from a factor n, are the same as (1.8) when the 

expression for a (§)     given by (l-9) is substituted in the latter. 

Our object will be to present proofs of these results stated 

precisely as limit theorems, under conditions which should be satisfied 

in nearly all applications. These follow the usual pattern, whereby 

consistency of the estimators is first established, and then the mean 

value theorem applied to obtain asymptotic normality with the aid of a 

central limit theorem. However, great care needs to be taken with the 

details, especially in the consistency part of the proof. It might be 

thought that a simple modification of the argument used in a previous 

paper (Walker, 1964) to give a rigorous proof of the result (5) above 

when no harmonic components are present would suffice, but the presence 

of the unknown frequencies makes the situation a great deal more' compli- 

cated. In the 'white noise' case, X, = m, +e,, the complications, 

although still quite troublesome, are substantially reduced. We there- 

fore deal first with this simpler situation in the present paper. The 

general model with residuals generated by a linear process will be 



considered in a subsequent paper» Appreciable simplification is also 

achieved when.there is only one harmonic component present. For this 

reason, we shall take q=l in (1.2) in the proof that follows in 

§§2-4, and then indicate the modifications required when q >1 in §5, 

the final section of the paper. 
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2.  Consistency of the estimator of angular frequency. 

For q=l it will be convenient to make a slight change of notation, 

and write 

m  = A cos ut + B sin art  . (2.l) t 

In the 'white noise' case, h(u, 0) = 1, and so (1.8) reduces to 

•'•••' n 

CQ - 2n_1 £ X (A cos ut +B sin ut) + | (A2+B2)  .  (2.2) 

Minimisation of (2.2) with respect to A, B, and w then gives 

estimators 

A  = - Y   X. cos ut ,    B  = - V   X. sin ut ,  (2.3) n    n , *-*n  t n    n A t       ' t=l t=l 

and u)  such that n 

I (w )  =   max  I (u)  , (2.1)-) nv n'    . ,, ^   nv '  ' \   / 
0<t0<3t 

where 

y») = 11i xt =iutl2 > <2-5> 

the usual definition of the periodogram intensity function (see, for 

example, Hannan, i960, p.52). The suffices n have been added to 

emphasise that the estimators depend on n;  strictly we should write 

*  (n) (n) A (X  ) etc., but the omission of the argument X    will cause no 

ambiguity. 



-1 Now (2.2) is approximately equal to n  S(A,B,to), where 

n P 
S(A,B,w) = Y,    (X+-A cos Wt-B sin wt)        (2.6) 

t=l 

is the residual sum of squares, provided that to is not near 0 or it, 

For 

n 
£ (A cos ut+B sin wt)2 - ^ (A2 + B2) 
t=l 

n 
•  Z UA2-B2) C

OS 2wt+2AB sin 2wt} 
t=l 

and 

Zr        o,,i_L-     •     o,>4.\             iu(n+l)  /sin nw\        . ^/„s (cos 2tot + i  sin 2cot)     =    e     * —:  is 0(1) K ' \   sm uy v   ' t=l 

if u lies in a closed interval contained in [0,it]. Thus our estimation 

procedure should be a reasonable one if the true value of to, u  say, 

is not 0 or . it. 

From now on we therefore make the assumption 

toQ jL    0 or it , . (2.7) 

which is quite- a mild restriction.  (2.7) would not be needed if we 
/S /N      /\ 

were to determine A , B , to  by minimising S(A,B,to) exactly, but 

this leads to much less pleasant estimation equations which are extremely 

inconvenient for. theoretical investigation of properties of the 

estimators. 

When 6,  is normal, the log-likelihood function is of course 

Ln(A,B,to,v)  = - |n log 2itv - S(A^,")  #       (2t8) 



/\ /\      A. 

J.AUS A , B )     ui.  are approximately maximum-likelihood estimators, 

being obtained by maximising a modified log-likelihood function given 

by replacing n"1 S(A,B,to)  in (2.8) by (2.2). 

/\ 
Since to  is determined by maximising I (co)  it is natural to 

n nv ' 

show first that this is consistent„ We shall in fact obtain a much 

stronger result, without which it is not clear how to establish con- 
?\ /\ 

sistency of A  and B . 
n       n 

Theorem 1.  Let m = A cos to t + B sin to t where co -f  0 or it. 

Then if co  is such that  I (co ) =   max   I (co) , 
0 < co < it 

^ -1 
co - co  = o (n~ ) ,    n -> M (2.9) 
n   0     p 

/\ 
so that  in particular    co      is  consistent. n 

Proof 

From (2.5)  we  have 

1 -        '   t. 
- n In(co)     =     I X    e1"     (A0  cos V+B0  Sln ü)0t+et)'        '     (2*10) 

Write 

A    cos to t + B     sin to t    =    D    e + D* e 

where    DQ = ~ (AQ- iB  ),     D* = - (A   + IB  ) .     Then  (2.10)  gives 

|nln(u)     =     |D0 Mn(o)+u)0)+D* Mn(ü)-o)0)  +   f    et elt0t|2     ,       (2,11) 
t=l 

where 
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n      .   , Q i(n+l)u   /sin — nu\ 

M (a)   =   Y, e      = e {—V~ ) '    ° < u <2lt 
t=l V   sin T- u/ 

,(2.12) 

=    n , • u = 0    or    2« 

that is, 

|nInH    =    |£   eteiü3tr + 2^{(^   ete
it0t)(D0Mri(üH-ü)0,)-fD*Mn(a.-co0))} 

(2.13) 
t=l t=l 

+ |D_ M (co+w ) + D* M (W-COA) I2     . 

When    to = to ,     (2.13)  is  dominated by the term 

lD0Mn(0)!2     =    \n2^l^l\    ' 

In fact, since the real and imaginary parts of 2, _•. e, e     each 

have variance 75- nv + 0(l),  so that 

n     iu t        / 
V e. e     =0 (n ; ) ,    and    M (2wJ  = 0 (l) Ca     t P nv 0     p 

Tj—'X 

because of the condition to ^ 0 or it, we see that 

Jnl (coj - i n2(A2 + B2) + 0 (n3/2)  , 
2   nv 0     4  v 0  0    p^   ' ' 

or 

In("0) = |n(A2+B2) + 0p(n
l/2)  .        (2.1>0 

¥e now obtain an estimate of     max    I (co), where 5 _  nv " 
j co-co I >n" 8 

can be arbitrarily small. For this we require the inequality 
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E{ max  |£ e e1Wt'|2) < v{n + 2 f  x1/2 dx}  .   (2.15) 
0<o)<jt t=l Jl 

This follows since 

v"     ioJti2       V    iws  A 
I L et e  '  = , i^-  e    L  et et+ls! t-1 s <n-l      t-1     X ' ' 

I    i ^  G ' 
s <n-l  t=l 

"t "t+lsl'  ' 

vhete expectation does not exceed 

n  0     n-1   n-s       „ , /r. n-1     . /0 

t=l       s=l   t=l s=l 

(Compare Walker,   19^5^  p.112,  equation  (29)).    From  (2.15)  we have 

t   e+ eiUt|2    =    0(n5/2)     . (2.16) 
n 

max 
0<w<jt    t-1    t ' P 

Using (2.l6)  and 

max       |M (U+U )|     =    0(l)   , max      I'M (u-w )|     =    n    , 
0<ü3<JC u 0<co<rt 

we see from (2.13) that 

max        I Jnl  (to) - |D*M (CO-CüJ|
2
|     -    0 (n5'2)  + 0  (n7^) + 0(n)     , .     >2      rv   '     '   0 nv      0''   ' p^ ' pv ' v   '     ' 

0 <C0<3t ^ 

giving 

max       |l  (uJ-K-^+B?)   lMn(a)-a)0) |2|     =    0(n5A)     .     (2.17) 
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If we were to add the assumption that E(|e, | ) < °° for some 

r > k,    we could use a much more powerful, but by no means elementary, 

result of Whittle (l959> P0I8O, equation (kk)),  according to which the 

factor n ' •  in (2.l6) can be reduced to n log n,  so that (2.17) 

l/2 becomes 0 {(n log n) ' },    but this is not necessary. 

1     12       PI PI 
Now the function JM (u) j  = (sin _- nu)/(sin _- u), 0 < u < 2.% 

2 decreases steadily from its absolute maximum of n  at , u = 0 to a 

minimum of zero at u = 2it/n. For the derivative of log |M (u)j'  is n 

1        1 
n cot — nu - cot — u = (2/u) {\|r(nu) - t(u)^ > 

where t(x) = x co^ x>     an<^ 

1     2 
\|/'(x)  = p- cosec x(-sin 2x- 2x) < 0   when   x > 0 

Hence for any prescribed 5, such that (sin — &/— 8) > l/it , 

. 21. p     sin - 8 
max   |Mh(u-w0)r - •• 2~T~^7 (2'l8) 

I,, ,, I - -lc. sin r n 5 |w-w I >n 8 2 

when n is sufficiently large, since further local maxima of this function 

2 it 
must be less- than cosec — . It follows from (2.17) that n \   1 / 

/"sin2 - 8 \ 
max'   In(U) < \ n-^-fflg) (.• f        ) + 0 (n3A) 

|cü-üi0|>n-^ ^in 2n y 

if n > n (8),  say. Hence 
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/"      1   X2 
1 1 9 P      /Sin  Ö  S 

p    lim    {n--1 max I^a).}    =   ± (A£+B£) (—^-S- 
n^~ loj-^l^n^S ~ \.28 

< \ ^A0+B0^  = P    lim    ^n_1 In^W0^'     from (2,llj-)-    This impües 
n ->oo 

lim    P{ max X
n^ < ^"o^    =    1 

n • -* oo       i i        - 2  |ü)-ü)  I >n    8 

and therefore 

lim   P{n|con-(A)0J   < 8}    =    1    . (2.20) 
n -* oo 

.•'••' ^ -1 
As 8 . can be arbitrarily small, (2.20) is equivalent to a) - u_ = o (n ). 
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3•  Consistency of estimators of coefficients of sine and cosine terms. 

We had A = - z"  X^ cos u t, ' B = - Z°  X. sin u t. (2.3) • n  n t-1 t     n '      n  n t=l t     n  v  ' 

Theorem 2,    Under the conditions of Theorem 1, 

/\ A 

p    lim   A      =   A^ and p    lim   B      =   B.     . (3. l) r n 0 n 0 - 
n -» oo n. -»• oo 

Proof 

•From the definition (2.3)} 

A A p      n iü)nt -iw
nt iu t 

A    MB    '=   -T    (D.e +D»e + £ J  e    n 

n n n    J-*    v 0 0 t 

and so 

2 A n iw t 
(A -Aj+i (B -B_)   =  - {D_M (u) -HO.) + D*(M (U -U_) - n)  +   V   e^ e    n } v n    0 v n    Cr n      0 nv n    0'      0V nv  n    0 .A,    t 

Thus 

•| (A -A.) +i(B  -Bjl i \  n    o'       x  n    0   ' 

2|D   I ^ A n iw t 
< — { IM (U +uj I + IM (to -wj-nl}  + £ I T    eA e I     . —        n       ^'n^nCr1     '   nv  n    0       ' n   'A,     t ' 

t=l 

Since     lu — 0)_ j < 5    is equivalent to    2u -6 < w +u    < 2w +S, 1   n    01 ^ 0 n    0 0 

consistency of    w      clearly gives 

p    lim    n"1   |Mn(wn + co0)|     =    0     . (3-3) 
n -*• oo 

Also 



•1k- 

M (Cü - ui ) - n = M (u - u) ) - M (O) 
n n  0 n n  0    nx ' 

= (u -W-) M'(w*) v n  0  rr n 

/\ 
where u>* e. (co ,co ). by the mean value theorem. But for all u, 

n    0 n ' 

4'H|  =  |f teiUt|  < n2  . 

Hence 

(3.*0 

In" (M (u -(J.)-n)|  < n|u - a>J 1   v nv n 0'   '     ' n  0' 

that is, 

o (l)  "by Theorem 1 , 

p lim |n"1(Mn(uri-o)0) -n)|  = 0 . (3.5) 
n -> 00 

ico t      , /, 
Finally, from (2.l6), |z   et e   | = 0 (r?'*),     and 

P  n     iü) t 
p lim  n I £ £t e    I  = °  ' ^'6^ 

n -> 00    t=l 

(3 >3),   (3-5),   (3.6) thus give 

p lim I (A -Aj+i(B -B_) I  = 0 1 \ n Q'       
v n 0 ' 

n -> 00 
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k-      Asymptotic distribution of the estimators. 

Define 

n        n 
u'(A,B,u) - = Y   X2 - 2 f   X.(A cos wt +B sin art) + ~ n(A2 + B2)  ,  (4.1) 
n t-1 t t=l t 2 

•which is equal to the approximation to the residual sum of squares that is 
/\      /S      /\ 

minimised to obtain the estimators w , A , B . Writing n  n  n 

au . ö2u 
~ST = ^n^A'    äÄScö = ^V)AU,'  

etc>  we have>  fey the mean value theorem, 

' K\   =   < UnW*<A(fV + <UnW(VV + <Un W^O^n*     ' (4°2) 
0 .       n n n n n n 

n n n n n n 

and 

(Vu,     ^   (UnW(VAn> + <UnW<V?n> + <UnW<VMn>     > <^> 0       n n   .        n n n n 

where we use the generic notation (A*,B*,w*) for a point on the line rr n' n 
/\   /\   s\ 

Joining (A0,B0,ü>0) and (An;
B
n;
w
n):>  so that 

(A*,B*,w*)  = \(A_,Brt,u_) + (l-\)(A ,B ,u )  ,     (4.5) K n'  n'  n       0 Cr 0        n' n/ n 

where 0 < K <  1.' The fact that the points (A*,B*,w*) in (4.2), 

(4.3) and (4.4) are different will cause no ambiguity. 

Now 
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(UA0 
= n Ao -2 4 -xtcos V 

n 2 
n A    - 2   Y    (A    COS    to t+B    sin w t cos u t+e.   cos u t)     (4.6) 

n 
- 2   Y    6,   cos (0_t + 0(1)     . 

£l    t ° 

Similarly 

n 
(U ) =    - 2   £   e.   sin u t + 0(l)     , (4.7) 

n B0 t=l    * ° 

and 

n 
(Ü )u      =    2   £   et t(A    sin u t -B    cos u t)  + 0(n)     .     (4.8) 

0 t=l 

The sums, in (4.6)  -  (4.8)  are all of the form    £+_,  k.   e.,    where 

lim max      l^l/C £    k2)1/2    =    0     . '     (4.9) 
n-*oo    1< t < n       '      t=l 

For example, with (4.8) 

n n 

I  kt  = ^ E  t2{| Ao^ "cos ^o1^ +l Bo^ + cos 2oJot) "AoBo sln 2uot] 
t=l t=l 

= 2(Ao+Bo> 4 t2 + 0<*2>   =  I n5<Ao + Bo> + *2   • 

It follows that the central limit theorem will apply to these. For (4.9) 

implies the Lindeberg condition (see, for example, Rao, 19°" 5 > p«108), 
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since, writing 

\  = \  £t '    Gn = <V X, kt)l/2  ' 

and    G,     for the distribution function of    r\ ,    we have 

X      f n
2aG(r))/<£    =   -L     ^    k2     r e2dF(£)     , 

&L.J|i,|>Ba t n a2    ^   t  J|e|>      7|     | 
n n ' '   n' ' t 

where ' F is the distribution function of e , and so does not exceed 

o 
/LKR-  /       h    I   e    &F(G)}    "which tends to zero when    n -* <».    Thus J   e   > Scr /max k, s  '' 1   ' n'        '   t'   •    • 

"1    /Q "1    /Q X   /O 

n   (U ). , n ' (U ) ,  n   (U )   converge in law respectively to n AQ       n a0 n uQ 

N(0,2v), N(0,2v), and N(0,| (A2+B2)v) when n -» ». 

For the limiting joint distribution we consider the random variable 

V^l'W   = \ n~l/2K)A0 
+ X2 ""^rA^ n"3/2(Un^o^    where 

the    X.     are arbitrary real numbers.    Now 

£ -3/2 V      =   2    > •   s. (K-.  n    7 : t(A.  sin to.t -B.  cos w.t) n *-;      t    3 0 0        0 0 t=l 

n-1/2  (K1 cos ut+Jjg sin u t)) + 0(n-1/2)     ,       (4.10) 

and the sum in (4.10)  is of the form    2,   ..   k    ,   e,     where x t=l    n,t    t 

lim max 
n->oo    1< t < n 

V    .2     >V2     _ V1^ <t»   '        -    °     < ^ 

-I/2 
the numerator in (4»11) being    0(n    '   )     and the denominator    0(l). 

Hence the central limit theorem will apply to this sum also by using 

the generalised Lindeberg condition (see,  for example,  Loeve/ i960, 

p.295),    which is implied by (4.11)  in exactly the same way as the 
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ordinary Lindeberg condition is implied by (4.9)« Now a straight- 

forward calculation shows that 

^   ,2 ^/,2 ,,2N   .  2,„2 ,,.2^2 
lim gx \,t   =  2^l^2)  

+ 3(A0+B0>3 + 2W5  " 
2V2S     '     (^12) 

n -» oo t 

Thus V  converges in law to a normal distribution with mean zero and n      D 

variance (4.12). Consequently, by using the equivalence of convergence 

in law and pointwise convergence of characteristic functions,, (see, for 

example, Rao, 19&5; P«103).> we see that the joint distribution of 

n"  ^Un^A '  n~   ^Un^B ' ^Un^to  converges in law to 

N((0,0,0), 2vW) (4.13) 

where 

1    o    |B0 

W •-•    i        0      1     - ~ AQ     :  „ (4.14) 

lBo -iAo J(Ao+Bo} 

Next, we look at the behaviour of the second partial derivatives 

occurring on the right-hand sides of (4.2) - (4.4). Three of these 

require no analysis, as 

<VAA   
=   <VBB   -  n '        <VAB   =  °   • ^'15> 

Now    (U ).     =2 Z,     • X,   t sin wt,     and so x  n'AiJ t=l    t 

("nWi*    =    2   I    (A0 COS V+B0 Sln V+6t)t Sin ^ n n t=l 

n n 
=    Bn   Y   t cos(#-uJt+2   Y   e,tsin#t+0(n)     . (4.l6) 

t=i t=i 
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^ -1 
From Theorem 1, oo - u  = o (n )}    and so, from (k.5)>  we also have 

to* - co =o (n~ ). Hence 
n  0   p 

n    i(w*-u)t 
7 t e . n °   = M«(u* - u_) ,/U. n n  0 t=l 

= M^(0) + (w*-w0) M^{X(ü3*-O)0)} ,    0 < X < 1 , 

= 2 n(n + l) + o (n )  , 

since     |M"(U) | "< z"_    t    ~ v rr     for all    w,    and so 

p    lim    n~      V   t cos(w*-w )t    =   -    . (^.17) 
n -» oo t=l n d 

Also,  employing an argument similar to that following equation  (2.15) 

in §2, we have 

n .   ,   r, «_ .       n- s itoti2 v io)s 

^ ,£ I    I '   St et+lsl   t(t+|s|)l     > |s|<n-l      t=l      v    X   |sl 

t=l 

n- Is 

so that 

E{    max      J Y,   e.te       |   } 
0 < w < Jt    t=l 

< E(V   t e2) + 2 
n£ [E((nf e    e        t(t+s))2}]V2 

t=l s=l t=l 

n-1    n-s    0 o i/o 
=   | n(n+l)  +27(7   t2(t+s)2}1/2 

s^L    t=L 

< | n(n+l)  + 2(n-1)  n5'2    <   3^'2     . (lj-.lß) 
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((4.18)  is a rather crude inequality, but it suffices here,)    It follows 

from (If. 18)  that 

|£   etsinwtl    <    {    max       |£   e teiut|2jV2    =    0fn
7A)     .     (4.19) 

t-1     X- n       • 0<W<Tt      t=l     t P 

Hence,  from (4.l6),   (4.17),   and (4.19), 

2 1 
p    lim    n    (Un)A^    ^    2B0     ' ^'20) 

n -» 00 n n 

Similarly,   since 

••'•'-•' n 

(un)B*(1)»   =   -2  E  (Ao cos wot+Bo sin biot+et')t cos ^ 
n n t=l 

n • n 
=    -A.    Y   t cos(u*-u) )t - 2   Y.   e^t- cos ar*t + 0(n)     , 0  ,t-n 

v  n      0 .*-..     t n \   /     > 
t=l t=l 

we obtain 

p    lim    n-2(Un) =    -|AQ     . (4.21) 
n -* 00 n n 

Finally, 

.2, 
(U ),<*,*   =2   Y   X.   t  (A* cos w*t + B* sin w*t) n'w*w* t-     t       v  n n        n n n n t=l 

n      2 
=  2    >     t  (A.  cos cont+B.  sin w_t)(A* cos co*t+B* sin w*t) 

J-'-, 0 0        0 0    v  n n        n n t=l 

n P • n 0 

+ 2 A*   y   e,   t    cos w*t + 2 B*   V   e.   t    sin u*t    .     (4.22) n   *-»      t n n   *-      t n v ' 

¥e  can show that 
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E{    max       | Y,    &+t e     • I   ^ 
2 iü3t|2- 

e oCn11/2) 
0 < to < it    t=l 

in exactly the  same way as we obtained (4.18),  and hence,   (4.5)  giving 

consistency of    A*    and    B*,    that the last two terms of  (4.22)   are 

each    0  (n    '   ).    Also the first term of (4.22) 

t=l 
t2{A A* cos(to*-(oJt+B0B* sin(co*-ui )t) + 0  (n2) 

„0 n n    0 On \n    0 p 

in5(A2 + B2)+op(a3) (it.23) 

since 

n      0    i(di»-u_)t 
£  t2 e     n   ° 
t=l 

nv  n      0 

Hence 

M"(0)  + (w* -u>_)  M"{\(u*-cuJ}   , 0 < \ < 1 
n n      0      n        n    0 

p    lim    n~5 (U  )   „   „     =    i (A2 +B2) 
* v  n'(o*to* 3   v 0      0 

n -> oo n n 
(4.24) 

Thus if 

n 

n"1(UnW 
1 n n 

n      (U   )A*T>* 

2 n n 

n~  <UnW 
n n 

n_1(UnW 
1 n n 

n~  (üaW 
2 n n 

n" (unW 
n n 

n~2(UnW 
2 n n 

n~  (Un)B^ 
-, n n 
3/ n (^Vo^to* 

n n 

(^.25) 

we have,  from (4.15),   (4.20),   (4.21)   and  (4.24), 

p    lim   W*    =    ¥ 
* n n -» oo 

(4.26) 
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¥e can now easily establish the following result, 

Theorem 3. Under the conditions of Theorem 1, 

{n ' (A -A ),  n ' (B -BQ), r?'   (to -«*>)) converges in law to 

N(0, 2vW-1)  ; (lt.27) 

when    n -> oo^     where    0    denotes the row vector     (0,0,0) . 

Proof.    Writing  (4.2)   as 

n-l/2(u  )        =     -l(u  ) nX/2(A -A  )+n_1(U  )._„  n^B.-B   ) 
n A„ n A*A* On v  n A*B* 0    n 0 n n n n 

+ n~   (U )•>.,,„ n5'   (wn-ü) )     , n A*u* On 
n n 

and.(4.3),   (4-4)   similarly/ we  see that 

{n"l/2(U  ).   ,   n_1/2(U L  ,   n~5/2(U  ),,  ) 

=    -   {nL/2(A  -A.),   nl/2(B  -Bj,   n3/2(w -uj J W*     . v  n    0 n    0y' n    0        n 

Thus 

'^H\-\),  "l/2(Sn-B0),  n5/2(vu,0)) 

'      -   1""1/2(VA0'  
n"l/2<Un)B0'  

n"3/2<Dn)lo0'  («S^    •       <^8> 

Hence, as {n ' (U ). , n ' (U )„ , n-'3' (U ). } converges in law to 
n A '       n Bn       n ui        ° 

N(0, 2vW), equation (4.13), (4.27) follows from an obvious generalisa- 

tion of an elementary limit theorem namely that if Y ,Y are row vector- 

valued and Z  matrix-valued random variables such that when n -* oo, 
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Y    -» Y,    p lim Z    = C,    then    Y Z    -> YC    (->   denoting convergence in n '    ^ n        ' nnv D 

law), whenever the products are defined.     (Compare,  for example, Rao, 

p.102  (xb)). 

(4.27.)  is the rigorous statement of the result  (1.5) for    q=l 

and    g(eo, 0)  =1    as a limit theorem.    The explicit formula for the~ inverse 

of    ¥    is 

W 2       2 
Ao+Bo 

/Ao+^Bo 

-?AoBo 

"3AoBo. 

^Ao+Bo 
6A. 

-6B 

6A, 

12 

(^.29) 

An equivalent way of stating the result of Theorem 3 is therefore that 

the. distribution of (A ,B ,w ) is asymptotically normal with mean 

(0,0,0)  and covariance matrix 

2v 
2  2 

Ao + Bo 

nrl(A^B2) 

-3n-1A0B0 

-6n~2B. 

-5n"Vo 

6n~2A 
0 

-6n_2B, 

6n~2A 

12n 

(^.30) 

The most notable feature of (k.JO)  is the very rapid decrease of 

the asymptotic variance of w , 24v/{n^(A +B_)}, when n increases. 

In fact in maximum likelihood estimation it is very rare to obtain an 

-3 asymptotic variance of order n, , although asymptotic variances of 

-2 
n   are not unusual. This phenomenon is due to the sharpness of the 

largest peak of the periodogram intensity function I . We might con- 

sequently expect the asymptotic variances of A  and B  to be the 
n      n 

same as if the frequency w^ were known, but we see from (4.30) that 
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this is not so. For example, the asymptotic variance of A  is 

2v(A + J+B_)/{n(A +B )},    which is greater than 2v/n, the asymptotic 

2 n 
variance of — S, , X, cos u t. unless B„= 0. n t=l tO' 0 
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5-  The case of several harmonic components. 

Suppose now that 

q. 
rn, = E(X.) = V    (A . cos u .t+B^ _ sin u _t)  ,   (5.1) Ä (A- t.   v t'  ,  4^1  r>°     r;°   rJ0     r^0 

A  , B _ and OJ    denoting the true values of the parameters. The x ,0'      r,0 r,0 *   . 

function corresponding to (2.2) whose minimisation yields estimators 
S\ /\ /\ 

A       ,     B  ,  to    (l < r < q)  then becomeö r,n .  r,n'  r^n    —  — 

co - 2n    r= j^     Ix V\  COS V+Br  Sln V)  + I    j^  <Ar+Br>   ' '     <5-2> 

Thus 

A 2      ^    '     - --   ••      - - 2 

r =   -     Y   X,   cos to      t , B =  -     V   X,   sin to      t    , •     (5.3) 
n        n     A«.,     t r, n r. n n     ,*-<      t r, n ' t-1 ' x=l > 

and if we write. 

/\ /N 

0)     =     (u, ,0J   .... .10   )    . to       =     (w        ,(d        .....CO        )      , 
— 1    2.'       '   q —n x   l,rr   2,n '   q^n'     ' 

r=l 

is a maximum when    to = to   . 
—     — n 

n Here, however, since terms of the form A A Z. , cos w t cos to t r s t=l     r      s 

and B B E, , sin to t sin a) t have been dropped in obtaining (5-2) 
±    S  X*—J_       X"        S 

from the residual sum of squares 

n       q p 

I [Xt " I (Ar COS V + Br sln V)]  ' 
t=l     r=l 

the maximisation of (5«*0 cannot be unrestricted; some condition must 
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be imposed to keep the co  from being too close together and so prevent 

two angular frequency estimators from converging in probability to the 

same value. In fact unrestricted maximisation obviously makes the 
/\ 
co    all equal to the angular frequency for which I  attains its 
r,n     • i   J n 

absolute maximum, and this will converge in probability to the co - 

2    2  l/2 
for which the corresponding amplitude  (A   +B  _) '   is largest. 

The required condition is 

lim min njto -co  J     =    co (5-5) 
n -» 00    1 <r^=s <q 

We might therefore, for example, minimise (^>.k)   subject to 

-I/2 
min' I co -co I  = n '        . (5.6) /   ' r s \s    / 

r f=  s •• 

When (5»5) holds, then in the relevant domain,  S  say, in co 

2 
space of the function cp ,  only q of the q  differences co - co 

can be 0(n ) .  If we label the components of the argument of cp so 

that these differences are co - co  , we see that the behaviour of r      r,Cr 

q q n iut,P 

b*n^    =    L   It   {Ds,0Mn(VWs,0^%0Mn(VWs,O^Z   V I 
x—_L    " tD—X X' — J_ 

where 

Ds,0    =jhAB,0-1Bs,o)-' ^0   =   ^(\Q*±\0) 

is  controlled by the  sum of terms       D* _M (to -co       ) when    co -co    _ 
r,0 nx r r,0 r r,0 

(l < r < q)  are small. In fact, we can show, just as in §2, that if 

we take a sequence of sets  {S } for which (5*5) holds, then 
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max 
u e S afe)-!""1^!»^^,») !V"p-"r,o)l8'.  - ap("3A» 

It will follow that if R „ = {w: I u -u .1 <n~ 5, 1 < r < q} is con- n,o   —' ' r r,0 — '       —  — ^ 

tained in S , which will be true for sufficiently large n,  and 

(c) R ' = S  - R c denotes its complement with respect to S „  then for n,o   n   n,o n 

sufficiently small 8, 

q    . .      /sin - 6\ 
P lim [n1 max    q, («o)) = - £ (A +B  ) -^    .  (5.7) 
n--     u   (c)         :  r=d. V25/   < 

—   n,o 

From (5*7) it is easily deduced that 

p lim. n(ur n-ur )  = 1 . (5.8) 
n -> 00    ' ' 

, Since cp  is symmetrical in its q arguments, a means of deter- 

mining which component of u is associated with a particular frequency 

has to be found. We can, however, obtain this from the fact that 

p lim n"1 I (u  )  = i(A2n+B
2 _)  ,        (5-9) n^ r.n    2 v r,0  r,0  ' v  ' 

which is fairly readily demonstrated by using Taylor's Theorem and (5.8). 

If therefore  the    w    n    are  labelled so that 
r,0 

2   2     2   2 2   2 
An „+Bn _ > A0 „+B0 n >  ... > A _+B _, then with probability tending 
1,0 1,0 — 2,0 2,0 —    — q,0 q,0 

to unity as n -* 00, 

I (u  ) > I (u  )>...> I (u  )  . 
nv l,n' — rr 2,n' —    — nv q,n' 

Thus if we determine the co    as the q largest local maxima of the r,n        ^    ° 

periodogram intensity subject to a separation condition satisfying (5»5) 
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these will, for .sufficiently large n,  almost certainly estimate the 

frequencies of the harmonic components arranged in descending order of 

magnitude. 

We then deduce that 

p lim A    = A   ,    p lim B    = B _ 
r^n     r,0 r^n     r,0 

by an argument of the type used in §3. 

Finally., if we denote (5*2) multiplied by n by U (A,B,io), 

where A = (A ,A  ,...,& ),    B = (B,,Bp,...,B ),     (compare equation 

(k.l)),  we see that  U (A^B^u)  is of the form 

y x2 +• y f   (A ,B ,o) ,x(n))  , 

so that applying the mean value theorem as in §4 gives us q sets of 

equations each of the form (4.2) - (k.k),   namely 

{nl/2(A  -A J, nl/2(B  -B J, n5/2(u  -to J} 
r,n r,0       r,n r^O       r,n x,0 

= -{n~i/2(U ),   , n"l/2(U )_  ,, n~3/2(U )    } (W*  )_1 ,  (5-10) n A  ' n B  '     N n u ^  v r,n    '  w  ' 
r,0 r,0 r,0    ' 

in an obvious notation.  From results of the type (k.6)   -   (4.8), fox- 

example , 

(Un)A    = "2 I e+ cos ^ nt +0(1)  , 
v,0 t=l 

and an application of the central limit theorem as in §k,   it follows 

that the row vectors on the right-hand sides of (5*10) are asymptotically 

distributed independently as N(0, 2vW_),  'where the matrix ¥  is 
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obtained by replacing A ;B„ in the expression (k.lk)  for ¥ respec- 

tively by A _,B _. Again as in §4, we can show that 

p lim W*   =• W • , r,n    r ' 
n -* oo  ' 

and so we reach the conclusion that the row vectors on the left-ha'nd 

sides of (5.10) are asymptotically distributed independently as 

N(0, 2VW ). This is the required generalisation of Theorem 3. 

In practice the determination of the estimators 10    could be r,n 

very troublesome because of the difficulty of maximising cp (to)  sub- 

ject to a restriction such as (5»6) and the awkward problem of the' 

appropriate choice of an appropriate minimum separation to be used for 

a particular set of data would also arise. We shall not consider such 

questions here as our purpose is restricted to the rigorous derivation 

of asymptotic properties» We note, however, that an asymptotically 

equivalent procedure would be to determine u)    by maximising I (co) 
x^ n jj. 

/\ 
unconditionally, then u    by maximising unconditionally 

2 n (X, -A.   cos CA)_  t - B.   sin 0Jn  t) e   I ,  where A,  ,B, 1 n=l -t  l,n     l,n   l,n     l,n '    '  .       l,n' l,n 
<N 

are obtained from (5.3 ).> and so on, w    being finally determined by q,n 

maximising 

I f    {X, - Y    (A   cos u  t + B   sin u  t)} e1Wtj2 

n=l     r=L   ' r,n   r,n    r,n 
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